Abstract
In order to compare solid and cluster models of zeolites, we have studied the substitution Si4+→Al3++H+ on the T1 site of mordenite in the dilute limit using a self-consistent, full potential, local density functional (LDF) approach. Clusters size ranged from 9 to 105 atoms. Two crystal models with different Al concentrations were used. The first contained one substitution site per primitive cell of 72 atoms, the other one per conventional cell, containing 144 atoms. The unrelaxed substitution energies as computed with cluster and crystal models correspond well if the cluster results are extrapolated to infinite radius. Size effects are much smaller in crystal models. In addition, a structure relaxation (with fixed unit cell) was carried out for pure-silica offretite, a zeolite with 54 atoms per unit cell, and pure-silica mordenite, with 144 atoms per unit cell, starting from the low aluminum content X-ray crystallographic structure. In the offretite and mordenite optimizations full use was made of the D3h1–P \documentclass{article}\pagestyle{empty}\begin{document}$ \bar 6 $\end{document}m2 and the nonsymmorphic D2h17–Cmcm space group symmetry, respectively. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 135–144, 1998
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.