Abstract
The rhodium-catalysed hydroacylation of alkene is one of the most useful C–H bond activation processes. The C–C bond-forming reactions via C–H bond activation have extensively been the focus of study in the fields of organic and organometallic chemistry. In this work, density functional theory has been used to study Rh(I)-catalysed hydroacylation and hydrogenation of ethene with formic acid. All the intermediates and the transition states were optimised completely at the B3LYP/6-311++G(d,p) level (LANL2DZ(d) for Rh, P). Calculation results confirm that Rh(I)-catalysed hydroacylation of ethene is exothermic and the released Gibbs free energy is − 60.39 kJ/mol. Rh(I)-catalysed hydrogenation of ethene is also exothermic and the released Gibbs free energy is − 150.97 kJ/mol. Rh(I)-catalysed hydroacylation of ethene is the dominant reaction mode for Rh(I)-catalysed hydroacylation and hydrogenation of ethene with formic acid. In Rh(I)-catalysed hydroacylation of ethene, the H-transfer reaction is prior to the C–C bond-forming reaction. Therefore, the reaction mode ‘a’ (i.e. ca → M1 → TS1 → M2 → TS2a → M3a → TS3a → M4 → P1) is the dominant reaction pathway for Rh(I)-catalysed hydroacylation and hydrogenation of ethene. The theoretically predicted dominant product is propane acid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.