Abstract
The geometries of the cyclodextrin (CD) inclusion complexes with various tautomeric forms of meloxicam in gas phase were determined by DFT calculation (B3LYP/6-31G (d,p)). The interaction energies were estimated including basis set superposition error (BSSE) correction. Two orientations of the meloxicam guest were considered: the benzene ring located near the narrow rim and at the wider rim of the β-cyclodextrin, respectively. The calculations show that in all cases the molecules are located inside the CD cavity. The preferred complexation orientation is that one, in which the benzene ring of meloxicam is located near the wider rim with the secondary hydroxyl groups of the CD. The stabilization energies for the encapsulation of the meloxicam guest molecules show an overall affinity ranking for the meloxicam guest molecule in the following order: anionic (deprotonated) form > zwitterionic form ∼ enolic form > cationic (protonated) form. A comparison of the enolic and zwitterionic neutral forms shows, that the zwitterionic structure is better stabilized upon complexation due to the geometry of two extra hydrogen bonds between host and guest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.