Abstract

We investigate the effect of structural fluctuations on charge transfer integrals, overlap integrals, and site energies in a system of two stacked molecular 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6), which is a model system for conducting devices in organic photocell applications. A density functional based computational study is reported. Accurate potential energy surface calculations are carried out using an improved meta-hybrid density functional to determine the most stable configuration of the two weakly bound HAT6 molecules. The equilibrium parameters in terms of the twist angle and co-facial separation are calculated. Adopting the fragment approach within the Kohn–Sham density functional framework, these parameters are combined to a lateral slide, to mimic structural/conformational fluctuations and variations in the columnar phase. The charge transfer and spatial overlap integrals, and site energies, which form the matrix element of the Kohn–Sham Hamiltonian are derived. It is found that these quantities are strongly affected by the conformational variations. The spatial overlap between stacked molecules is found to be of considerable importance since charge transfer integrals obtained using the fragment approach differ significantly from those using the dimer approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.