Abstract

Graphyne, a lattice of benzene rings connected by acetylene bonds, is one-atom-thick planar sheet of sp- and sp2-bonded carbons differing from the hybridization of graphene (considered as pure sp2). Here, HCN adsorption on the pristine and Si-doped graphynes was studied using density-functional calculations in terms of geometric, energetic, and electronic properties. It was found that HCN molecule is weakly adsorbed on the pristine graphyne and slightly affects its electronic properties. While, Si-doped graphyne shows high reactivity toward HCN, and, in the most favorable state, the calculated adsorption energy is about −10.1 kcal/mol. The graphyne, in which sp-carbon was substituted by Si atom, is more favorable for HCN adsorption in comparison with sp2-carbon. It was shown that the electronic properties of Si-doped graphyne are strongly sensitive to the presence of HCN molecule and therefore it may be used in sensor devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.