Abstract

The quadrupole splitting in the 23Na nuclear magnetic resonance (NMR) spectrum of the hexanuclear ferric wheel Na@Fe6(tea)6+ has been computed via an evaluation of the electric-field gradient (EFG) at the Na nucleus in the framework of density-functional theory (DFT). The simulated spectrum is compared with experimental data. A total of 26 = 64 Kohn-Sham determinants (a number that reduces to eight symmetry-unique determinants due to the high S6 symmetry of the ferric wheel) with six localised high-spin Fe(III) centres (S = 5/2) could be optimised in a self-consistent manner, and the corresponding DFT energies of all of these (broken-symmetry) determinants coincide almost perfectly according to the Ising Hamiltonian solutions, especially when the energy is computed from the B3LYP functional. The EFG at the Na atom does not depend much on the specific Kohn-Sham determinant but depends on the geometry of the ferric wheel and on the basis set used in the DFT calculations (particularly with regard to the atomic functions on the Na atom).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.