Abstract

A density functional approximation, which is based on both the density functional Taylor series expansion of the one-particle direct correlation function and the exact contact value theorem for a hard wall, has been proposed to study the structural properties of confined classical fluids. The approximation has been applied to calculate the density profiles of sticky hard-sphere fluids confined in structureless hard walls. The calculated density profiles have shown that the present approximation compares very well with the results from the computer simulation. Furthermore, a density functional perturbative approximation, which is based on both the weighted-density approximation for the repulsive part of potential and the present approximation for the attractive part of potential, has been developed to predict the density profiles of model fluids with the attractive part of potential and has been applied to calculate the density profiles of hard-sphere Yukawa fluids near a planar slit. The calculated results also show that the proposed perturbative approximation is a significant improvement upon those of the modified version of the Lovett-Mou-Buff-Wertheim, and compares very well with the computer simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call