Abstract

As one of the most common eye conditions being presented at clinics, acute conjunctivitis puts substantial strain on primary health resources. To reduce this public health burden, it is important to forecast and provide forward guidance to policymakers by estimating conjunctivitis trends, taking into account factors which influence transmission. Using a high-dimensional set of ambient air pollution and meteorological data, this study describes new approaches to point and probabilistic forecasting of conjunctivitis burden which can be readily translated to other infectious diseases. Over the period of 2012 – 2022, we show that simple models without environmental data provided better point forecasts but the more complex models which optimized predictive accuracy and combined multiple predictors demonstrated superior density forecast performance. These results were shown to be consistent over periods with and without structural breaks in transmission. Furthermore, ecological analysis using post-selection inference showed that increases in SO2, O3 surface concentration and total precipitation were associated to increased conjunctivitis attendance. The methods proposed can provide rich and informative forward guidance for outbreak preparedness and help guide healthcare resource planning in both stable periods of transmission and periods where structural breaks in data occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.