Abstract
Abstract This paper presents simulation-based density forecast evaluation methods using particle filters. The simulation-based dynamic probability integral transformation or log-likelihood evaluation method is combined with the existing density forecast evaluation methods. This methodology is applicable to various density forecast models, such as log stochastic volatility models and affine jump diffusion (AJD) models, for which the probability integral transform or likelihood computation is difficult due to the presence of latent stochastic volatilities. This methodology is applied to the daily S&P 500 stock index. The empirical results show that the AJD models with jumps perform the best for out-of-sample evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.