Abstract

Knowing the behavior of a fluid in small volumes is essential for the understanding of a vast array of common problems in science, such as biological interactions, fracture propagation, and molecular tribology and adhesion, as well as pressure solvation and other geophysical processes. When a fluid is confined, its phase behavior is altered and excluded-volume effects become apparent. Pioneering measurements performed with the surface forces apparatus have revealed so-called structural or oscillatory solvation forces as well as the occurrence of a finite shear stress, which was interpreted as a solidification transition. Here, we report measurements obtained with an extended surface forces apparatus, which makes use of fast spectral correlation to gain insight into the behavior of a thin film of cyclohexane confined within attoliter volumes, with simultaneous measurement of film thickness and refractive index. With decreasing pore width, cyclohexane is found to undergo a drastic transition from a three-dimensional bulk fluid to a two-dimensional adsorbate with strikingly different properties. Long-range density fluctuations of unexpected magnitude are observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.