Abstract
A two-dimensional single component two-phase lattice Boltzmann model was used to simulate the Rayleigh–Taylor instability in a closed system. Spatiotemporally variable densities were generated by gravity acting on the fluid density. The density fluctuations were triggered by rapid changes in the fluid velocity induced by changes in the interface geometry and impact of the dense fluid on the rigid lower boundary of the computational domain. The ratio of the maximum density fluctuations to the maximum fluid velocity increased more rapidly at low velocities than at high velocities. The ratio of the maximum density fluctuations in the dense phase to its maximum velocity was on the order of the inverse of the sound speed. The solution became unstable when the density-based maximum local Knudsen number exceeded 0.13.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.