Abstract

A distributed routing control algorithm for dynamic networks has recently been presented in the literature. The networks were modeled using time evolution of density at network edges and the routing control algorithm allowed edge density to converge to a Wardrop equilibrium, which was characterized by an equal traffic density on all used paths. We borrow the idea and rearrange the density model to recast the problem within the framework of mean-field games. The contribution of this paper is three-fold. First, we provide a mean-field game formulation of the problem at hand. Second, we illustrate an extended state space solution approach. Third, we study the stochastic case where the density evolution is driven by a Brownian motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.