Abstract

paper attempts to examine the optimality of LDPC codes for compression of nonuniform source with Slepian-Wolf coding using density evolution technique. The primary goal is to evaluate the performance of LDPC codes with reference to turbo codes (in SF-ISF setup). The appreciable difference between LDPC and turbo codes is also discussed in this paper. The threshold values obtained from the density evolution technique indicate that the conditional entropy H(X/Y) is nearly constant with source distribution. This feature is useful in calculating the threshold values for any given source distribution analytically. This special feature is true for only LDPC codes. Several well known LDPC codes, both regular and irregular are critically analyzed using density evolution technique. This analysis reveals that the capacity approaching LDPC codes with respect to error correction codes do indeed approach the Slepian-Wolf bound for nonuniform sources as well. The threshold values show that the nonuniform source can be compressed to near about 0.01bits/sample away from Slepian-Wolf bound even for highly decorrelated side information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.