Abstract
AbstractOne among several advantages of measure transport methods is that they allow or a unified framework for processing and analysis of data distributed according to a wide class of probability measures. Within this context, we present results from computational studies aimed at assessing the potential of measure transport techniques, specifically, the use of triangular transport maps, as part of a workflow intended to support research in the biological sciences. Scenarios characterized by the availability of limited amount of sample data, which are common in domains such as radiation biology, are of particular interest. We find that when estimating a distribution density function given limited amount of sample data, adaptive transport maps are advantageous. In particular, statistics gathered from computing series of adaptive transport maps, trained on a series of randomly chosen subsets of the set of available data samples, leads to uncovering information hidden in the data. As a result, in the radiation biology application considered here, this approach provides a tool for generating hypotheses about gene relationships and their dynamics under radiation exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Statistical Analysis and Data Mining: The ASA Data Science Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.