Abstract
A general nonparametric density estimation problem is considered in which the data is generated by a spatial point process. Several practical problems are special cases of it, including those of estimating the common probability density of a sequence of random vectors and estimating the product density of a stationary multivariate point process. Kernel and k-nearest neighbor estimators are defined and in each case the joint asymptotic normality and consistency of the estimates of the density at a given finite number of points is derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.