Abstract

We consider the problem of estimating the density of a random variable $X$ that can be sampled exactly by Monte Carlo (MC). We investigate the effectiveness of replacing MC by randomized quasi Monte Carlo (RQMC) or by stratified sampling over the unit cube, to reduce the integrated variance (IV) and the mean integrated square error (MISE) for kernel density estimators. We show theoretically and empirically that the RQMC and stratified estimators can achieve substantial reductions of the IV and the MISE, and even faster convergence rates than MC in some situations, while leaving the bias unchanged. We also show that the variance bounds obtained via a traditional Koksma-Hlawka-type inequality for RQMC are much too loose to be useful when the dimension of the problem exceeds a few units. We describe an alternative way to estimate the IV, a good bandwidth, and the MISE, under RQMC or stratification, and we show empirically that in some situations, the MISE can be reduced significantly even in high-dimensional settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.