Abstract

We have carried out Molecular Dynamics simulations on a sodium borosilicate glass in order to analyze how the structure of the glass during irradiation is affected by the choice of the density in the liquid state before cooling. In a pristine form generated through the usual melt-and-quench method, both short- and medium-range structures are affected by the compressive or tensile environment under which the glass model has been generated. Furthermore, Na-rich areas are much easier to compress, producing a more homogeneous glass, in terms of density, as we increase the confinement during the quench. When the glass is subjected to displacement cascades, the structural modifications saturate at a deposited energy of approximately 8eV/atom. Swelling appears for the glasses that were initially prepared under compression, while contraction is evident for the ones prepared under tension. We have equally prepared glass models using a fast quench method, and we have found that they present an analogous disorder as the glasses submitted to displacement cascades. Compared to the irradiated glass, we found that the magnitude of the modifications for the fast quenched glass is lower, most notably in terms of boron and sodium coordination, the percentage of non-bridging oxygens and in the ring distributions. This later result agrees with statements extracted from recent experimental works on nuclear glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.