Abstract

A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is based on the transport equation in magnetic plasma and mode conversion from electromagnetic wave to electrostatic wave in ionospheric modification. Threshold electric field for exciting small-scale (meter scale) irregularities and spatial spectra of irregularities are analytically calculated by this model. The results indicate that background electron density and geomagnetic field play an important role for the threshold electric field and the spatial scale of the electron density irregularities. The results demonstrate that the electric field threshold increases with the decrease of the spatial scale of the irregularities. For exciting meter scale irregularities, the threshold electric field is about tens of mV m−1. The theoretical results are consistent with those of the experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call