Abstract

The one-point probability distribution function (PDF) of the matter density field in the universe is a fundamental property that plays an essential role in cosmology for estimates such as gravitational weak lensing, non-linear clustering, massive production of mock galaxy catalogs, and testing predictions of cosmological models. Here we make a comprehensive analysis of the dark matter PDF using a suite of 7000 N-body simulations that covers a wide range of numerical and cosmological parameters. We find that the PDF has a simple shape: it declines with density as a power-law P~rho**(-2), which is exponentially suppressed on both small and large densities. The proposed double-exponential approximation provides an accurate fit to all our N-body results for small filtering scales R< 5Mpc/h with rms density fluctuations sigma>1. In combination with the spherical infall model that works well for small fluctuations sigma<1, the PDF is now approximated with just few percent errors over the range of twelve orders of magnitude -- a remarkable example of precision cosmology. We find that at 5-10% level the PDF explicitly depends on redshift (at fixed sigma) and on cosmological density parameter Omega_m. We test different existing analytical approximations and find that the often used log-normal approximation is always 3-5 times less accurate than either the double-exponential approximation or the spherical infall model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.