Abstract

We studied fish size structure by using mean size, size diversity, and the slope of linear size spectra of six common European fish species along large-scale environmental gradients. We further analyzed the response of these three size metrics to environmental variables and to density-dependent effects, i.e., relative estimates of abundance (catch per unit effort, CPUE). We found differences in the strength of main predictors of size structure between the six species, but the direction of the response was relatively similar and consistent for most of the size metrics. Mean body size was negatively related to temperature for perch (Perca fluviatilis), roach (Rutilus rutilus), and ruffe (Gymnocephalus cernuus). Lake productivity (expressed as total phosphorus concentration) and lake depth were also predictors of size structure for four of six species. Moreover, we found a strong density dependence of size structure for all species, resulting in lower mean body size and size diversity and steeper size spectra slopes when density dependence increases. This suggests that density dependence is a key driver of fish size structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call