Abstract

Porous Shape Memory Alloys (SMAs) are of particular interest for many industrial applications, as they combine intrinsic SMA (shape memory effect and superelasticity) and foam characteristics. The computational cost of direct porous material modeling is however extremely high, and so designing porous SMA structure poses a considerable challenge. In this study, an attempt is made to simulate the superelastic behavior of porous materials via the modeling of fully dense structures with material properties modified using a porous/bulk density ratio scaling relation. Using this approach, direct modeling of the porous microstructure is avoided, and only the macroscale response of the model is considered which contributes to a drastic reduction of the computational cost. Foam structures with a gradient of porosity are also studied, and the prediction made using the fully dense material model is shown to be in agreement with the mesoscale porous material model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.