Abstract

Making use of the global color symmetry model (GCM) at finite chemical potential and with a sophisticated effective gluon propagator, the density dependence of the bag constant, the total energy and the radius of a nucleon in nuclear matter is investigated. A maximal nuclear matter density for the existence of the bag with three quarks confined within is given as about 8 times the normal nuclear matter density. The calculated results indicate that, before the maximal density is reached, the bag constant and the total energy of a nucleon decrease, and the radius of a nucleon increases, with the increasing of the nuclear matter density. As the maximal nuclear matter density is reached, the mass and the bag constant of the nucleon vanish and the radius becomes infinite suddenly. It manifests that a phase transition from nucleons to quarks takes place. Meanwhile, shortening the interaction range among quarks can induce the phase transition to happen easier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.