Abstract
Neglecting small fragments in space debris evolutionary models can lead to a significant underestimation of the collision risk for operational satellites. However, when scaling down to the millimetre range, the debris population grows to over a hundred million objects, making deterministic approaches too computationally expensive. On the contrary, probabilistic models provide a more efficient alternative, which however typically works under some simplifying assumptions on the dynamics, limiting their field of applicability. This work proposes an extension of the density-based collision risk models to any orbital dynamics and impact geometry. The impact rate with a target satellite is derived from a multi-dimensional phase space density function in orbital elements, which discretely varies over both phase space and time. The assumption of a bin-wise constant cloud density allows for the analytical transformation of the six-dimensional distribution in orbital elements into the three-dimensional spatial density function, guaranteeing an efficient and accurate evaluation of the fragments flux. The proposed method is applied to the assessment of the collision risk posed by occurred fragmentation events in different orbital regions on a high-risk target object. The effect on the impact rate of the modelling improvements, compared to previous probabilistic formulations, is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.