Abstract

AbstractClustering refers to the task of identifying groups or clusters in a data set. In density‐based clustering, a cluster is a set of data objects spread in the data space over a contiguous region of high density of objects. Density‐based clusters are separated from each other by contiguous regions of low density of objects. Data objects located in low‐density regions are typically considered noise or outliers. In this review article we discuss the statistical notion of density‐based clusters, classic algorithms for deriving a flat partitioning of density‐based clusters, methods for hierarchical density‐based clustering, and methods for semi‐supervised clustering. We conclude with some open challenges related to density‐based clustering.This article is categorized under: Technologies > Data Preprocessing Ensemble Methods > Structure Discovery Algorithmic Development > Hierarchies and Trees

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.