Abstract

A deterministic procedure for optimal approximation of arbitrary probability density functions by means of Dirac mixtures with equal weights is proposed. The optimality of this approximation is guaranteed by minimizing the distance of the approximation from the true density. For this purpose a distance measure is required, which is in general not well defined for Dirac mixtures. Hence, a key contribution is to compare the corresponding cumulative distribution functions. This paper concentrates on the simple and intuitive integral quadratic distance measure. For the special case of a Dirac mixture with equally weighted components, closed-form solutions for special types of densities like uniform and Gaussian densities are obtained. Closed-form solution of the given optimization problem is not possible in general. Hence, another key contribution is an efficient solution procedure for arbitrary true densities based on a homotopy continuation approach. In contrast to standard Monte Carlo techniques like particle filters that are based on random sampling, the proposed approach is deterministic and ensures an optimal approximation with respect to a given distance measure. In addition, the number of required components (particles) can easily be deduced by application of the proposed distance measure. The resulting approximations can be used as basis for recursive nonlinear filtering mechanism alternative to Monte Carlo methods

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.