Abstract

We examine the influence of density on the transition between chain and spiral structures in planar assemblies of active semiflexible filaments, utilizing detailed numerical simulations. We focus on how increased density, and higher Péclet numbers, affect the activity-induced transition spiral state in a semiflexible, self-avoiding active chain. Our findings show that increasing the density causes the spiral state to break up, reverting to a motile chain-like shape. This results in a density-dependent reentrant phase transition from spirals back to open chains. We attribute this phenomenon to an inertial effect observed at the single polymer level, where increased persistence length due to inertia has been shown in recent three-dimensional studies to cause polymers to open up. Our two-dimensional simulations further reveal that a reduction in the damping coefficient leads to partial unwinding of the spirals, forming longer arms. In suspension, interactions among these extended arms can trigger a complete unwinding of the spirals, driven by the combined effects of density and inertia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.