Abstract

A procedure for accurate densitometric quantification of gangliosides separated by two-dimensional thin layer chromatography is reported. The procedure was set up employing 9 different pure gangliosides and was applied to the analysis of calf and pig brain gangliosides. Silica gel high performance thin layer plates, 10 x 10 cm. were two-dimensionally developed at 18-20 C with the following solvents: chloroform methanol 0.2% aqueous CaCl(2), 50/40/10 by volume, for the first run; n-propanol 17 M NH(4)OH/water, 6/2/1 by volume for the second run. Ganglioside spots were visualized by spraying with an Ehrlich reagent, which is specific for sialic acid, and heating at 120 C for 15 min. The spots were quantified by sequential scanning densitometry, linear responses being obtained for ganglioside amounts on the plate ranging from 0.1 to 6 nmol as bound sialic acid. The reproducibility of densitometric responses resulted to be acceptable since the standard deviation values were lower than +/- 15% of the mean values also for those ganglioside species contained in minor proportions. The ganglioside mixtures of calf and pig brain were resolved in about 20 spots. Of these 9 corresponded to gangliosides GM3, GM2, GM1, Fuc-GM1, GD1a, GD1b, Fuc-GD1b, GT1b and GQ1b, which were identified with certainty and quantified. The identification of GM3 (carrying N-glycolylneuraminic acid), GD3, GD1a (carrying N-acetyl- and N-glycolyl-neuraminic acid) and GT1a was only tentative. All the other spots corresponded to unidentified gangliosides, some of them possibly new species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call