Abstract

Cortical dysplasia (CD) is a major cause of epilepsy in children and adults, but underlying mechanisms of epileptogenesis in this disorder are poorly understood. We have utilized the irradiated rat model to study an injury-based form of diffuse CD in rats. Prior studies in this model have shown reduced numbers of γ-aminobutyric acid (GABA)ergic interneurons and reduced inhibitory synaptic currents in pyramidal cells in CD. We analyzed the number of excitatory and inhibitory presynaptic terminals in the neocortex of irradiated rats to better characterize altered connectivity in experimental CD. Antibodies to vesicular glutamate transporter 1 (VGLUT1), vesicular glutamate transporter 2 (VGLUT2), vesicular GABA transporter (VGAT), and parvalbumin (PV) were used to quantify glutamatergic and GABAergic presynaptic terminals in control and dysplastic cortex. We found that the density of VGLUT1 terminals was increased in CD in comparison to layers IV, V, and VI in control cortex. VGLUT2 terminals were increased in CD compared to layers IV and VI. VGAT terminals were reduced in CD compared to layers II/III, IV, and V in controls as were PV-immunoreactive somata and terminals. These findings suggest an overall increase in excitatory synaptic connectivity and decrease in inhibitory synaptic connectivity in CD in irradiated rat. We propose that these changes contribute to hyperexcitability in these animals and may contribute to epileptogenicity in some forms of human CD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.