Abstract

We show that densification of silica glass at ambient pressure as observed in irradiation experiments can be attributed to defect generation and subsequent structure relaxation. In our molecular dynamics simulations, defects are created by randomly removing atoms, by displacing atoms from their nominal positions in an otherwise intact glass, and by assigning certain atom excess kinetic energy (simulated ion implantation). The former forms vacancies; displacing atoms and ion implantation produce both vacancies and "interstitials." Appreciable densification is induced by these defects after equilibration of the defective glasses. The structural and vibrational properties of the densified glasses are characterized, displaying resembling features regardless of the means of densification. These results indicate that relaxation of high free-energy defects into metastable amorphous structures enriched in atomic coordination serves as a common mechanism for densification of silica glass at ambient pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call