Abstract

Based on a previous experimental study of particle deformation during powder compaction, a model is developed for describing the densification behaviour of an irregular packing of spherical particles. Using the radial density function of a ‘random dense packing’, the increase in both the average size and the number of contact faces are calculated. A simple criterion for local yielding allows the compaction pressure to be determined for relative densities up to 90%. In the final stage of compaction, particle deformation, now constrained by neighbouring contacts, is modelled by extrusion into the remaining pore space. A compaction equation encompassing both stages is presented; its application to non-spherical powders elucidates the role of particle shape during powder densification. PM/0150

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call