Abstract

Dense (Zr, Ti) (C, N) ceramics were fabricated by spark plasma sintering (SPS) at 1900–2000 °C using ZrC, TiCN and ZrH2 powders as raw materials. A single Zr-rich (Zr, Ti)(C, N) solid solution was formed in Zr0.95Ti0.05C0.975N0.025 and Zr0.80Ti0.20C0.90N0.10 ceramics (nominal composition). A Ti-rich solid solution appears in Zr0.50Ti0.50C0.75N0.25 ceramics. The coaddition of TiCN and ZrH2 promoted the densification of (Zr, Ti) (C, N) ceramics by forming solid solutions and carbon vacancies, which could reduce critical resolved shear stress (CRSS) and promote carbon and metal atom diffusion. ZrC-45 mol% TiCN-10 mol% ZrH2 (raw powder composition) possesses good comprehensive mechanical properties (Vickers hardness of 24.5 ± 0.9 GPa, flexural strength of 503 ± 51 MPa, and fracture toughness of 4.3 ± 0.2 MPa·m1/2), which reach or exceed most ZrC-based (Zr, Ti) C and (Zr, Ti) (C, N) ceramics in previous reports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.