Abstract
In this paper, the corresponding densification, microstructure, precipitate phase and mechanical properties of Al-14.1Mg-0.47Si-0.31Sc-0.17Zr fabricated by selective laser melting were detailly investigated. The experimental result shows that the densification of SLM specimens increased first and then decreased with energy density. Even at the same energy density, the relative densities of the samples are also different, and the printed sample has a high densification under the condition of low laser power and scanning speed. Two typical microstructures (fine grain zone and coarse grain zone) were formed inside the printed samples due to the formation of Al3(Sc, Zr) particles (coherent with the Al matrix) during the solidification process of SLM. As fabricated at 200 W and 500 mm/s, the average grain size of the SLM sample is 2.07 (Y-Z plane) and 1.72 μm (X–Y plane), and the maximum values of nano-hardness and tensile strength were 2.19 GPa and 510 MPa, respectively. The mechanical properties increased due to the combined effect of fine grain strengthening and dispersed distribution of precipitates in Al matrix. With a low density (2.537 g/cm3) and high tensile strength, the components fabricated by this alloy have more extensive spreading values and prospects for applying due to the excellent mechanical performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.