Abstract

The roles of additives (MnO2, SiO2, and CdO) in controlling microstructural development and piezoelectric properties of Pb(Ni1/3Nb2/3)O3– PbTiO3–PbZrO3(PNN–PT–PZ) ceramics were systematically examined. The addition of SiO2 (<1 wt. %) to the pseudoternary PNN–PT-PZ system enhances densification, but suppresses grain growth significantly. On the other hand, the presence of MnO2 expedites the rate of grain growth without increasing the rate of densification appreciably. The observed difference in the grain-growth behavior was discussed in terms of the viscosity of liquid phase formed during sintering and the diffusion-controlled process for the solute-atoms transport. The rapid increase in the mechanical quality factor (Qm) and the decrease in the relative dielectric permittivity (∊r) and d33 for the MnO2-doped specimens indicate the formation of oxygen vacancies by the dissolution of Mn-atoms into the B-sites of perovskite structure. On the contrary, the presence of CdO (2 mol %) remarkably increases ∊r and d33 of PNN–PT–PZ ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.