Abstract

The response of SiO2 thin films and implantation masks to 4.0 MeV Xe irradiation is studied. Trenches in silica deform dramatically after irradiation with 3×1015 ions/cm2. In situ wafer curvature measurements show that thin planar silica films first densify by 3.6% during irradiation. The resulting stress then relaxes viscously by radiation-enhanced Newtonian flow. At a flux of 3×1010 Xe ions/cm2s the measured shear viscosity was 6×1013Pa s. We find evidence that an irradiation induced anisotropic deformation mechanism is present in the silica films. In equilibrium, this deformation leads to an average compressive saturation stress as large as 4.5×107 Pa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.