Abstract

With the rapidly developing unmanned aerial vehicles, the requirements of generating maps efficiently and quickly are increasing. To realize online mapping, we develop a real-time dense mapping framework named DenseFusion which can incrementally generates dense geo-referenced 3D point cloud, digital orthophoto map (DOM) and digital surface model (DSM) from sequential aerial images with optional GPS information. The proposed method works in real-time on standard CPUs even for processing high resolution images. Based on the advanced monocular SLAM, our system first estimates appropriate camera poses and extracts effective keyframes, and next constructs virtual stereo-pair from consecutive frame to generate pruned dense 3D point clouds; then a novel realtime DSM fusion method is proposed which can incrementally process dense point cloud. Finally, a high efficiency visualization system is developed to adopt dynamic levels of detail (LoD) method, which makes it render dense point cloud and DSM smoothly. The performance of the proposed method is evaluated through qualitative and quantitative experiments. The results indicate that compared to traditional structure from motion based approaches, the presented framework is able to output both large-scale high-quality DOM and DSM in real-time with low computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.