Abstract

The central body in the median protocerebrum of the brain of the crayfish Cherax destructor is a distinctive area of dense neuropile, the nerve fibres of which contain three main types of vesicles: electronlucent vesicles (diameter 35 nm), dense-core vesicles (diameter 64 nm), and large structured dense-core vesicles (diameter 98 nm, maximum 170 nm). Different vesicle types were found together in the same neurons. Electronlucent vesicles were seen at presynaptic sites and rarely observed in the state of exocytosis. Exocytosis of densecore and structured dense-core vesicles was a regular feature on non-synaptic release sites either close to, or at some distance from pre- and subsynaptic sites. Non-synaptic exocytotic sites are more often observed than chemical synapses. Different forms of exocytosis seen at non-synaptic sites included the release of single densecore vesicles, packets of dense-core vesicles, and rows of dense-core vesicles lined up along cell membranes and around fibre invaginations. Swelling and the enhanced electron density of extracellular non-synaptic spaces may mark the positions of prior exocytotic events. In vitro treatment of the brain with tannic acid buffer solution followed by conventional double fixation resulted in the augmentation of non-synaptic exocytosis. Electron microscopy of proctolin- and serotonin-immunoreactive nerve fibres shows them to contain dense-core and electron-lucent vesicles and to be surrounded by many unlabelled profiles similarly laden with dense-core vesicles and electron-lucent vesicles, indicating the presence of other, not yet identified, neuroactive compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call