Abstract
Orthorhombic niobium pentoxide (T-Nb2O5) is regarded as a potential anode material for lithium-ion batteries (LIBs) due to ultrafast charge/discharge and high safety. However, the poor electronic conductivity and low mass loading of nanostructured T-Nb2O5 limit its practical application in LIBs. Herein, we design and construct dense microspheres consisting of nanostructured T-Nb2O5 embedded in amorphous N-doped carbon (Nb2O5@NC) via a facile method to achieve fast ionic and electronic transport as well as a high mass loading. The dense micro-sized particles with an interconnected carbon network avoid the low mass loading and volumetric energy density of conventional nanostructures. Interconnected pores in the range of a few nanometers are also formed in the Nb2O5@NC microspheres. Notably, at a high mass loading of 12.8 mg cm-2, Nb2O5@NC can achieve a high specific capacity of 171.5 mAh g-1 and an areal capacity of 2.05 mAh cm-2, showing its high lithium storage capacity. The intercalation reaction mechanism with a small volume change during cycling at both crystal lattice and microsphere levels is confirmed by in situ X-ray diffraction and in situ high-resolution transmission electron microscopy. The elegant structure and the electrochemical reaction mechanism disclosed in the work is important for designing ultrafast-(dis)charge electrode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.