Abstract
This paper presents a method for identifying a set of dense subgraphs of a given sparse graph. Within the main applications of this “dense subgraph problem,” the dense subgraphs are interpreted as communities, as in, e.g., social networks. The problem of identifying dense subgraphs helps analyze graph structures and complex networks and it is known to be challenging. It bears some similarities with the problem of reordering/blocking matrices in sparse matrix techniques. We exploit this link and adapt the idea of recognizing matrix column similarities, in order to compute a partial clustering of the vertices in a graph, where each cluster represents a dense subgraph. In contrast to existing subgraph extraction techniques which are based on a complete clustering of the graph nodes, the proposed algorithm takes into account the fact that not every participating node in the network needs to belong to a community. Another advantage is that the method does not require to specify the number of clusters; this number is usually not known in advance and is difficult to estimate. The computational process is very efficient, and the effectiveness of the proposed method is demonstrated in a few real-life examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.