Abstract

Two independent sets of arguments lead us to conclude that the progenitors of superintense bursts (with an energy yield larger than that for ordinary supernovae by one or two orders of magnitude) are born in massive dense star clusters, but generally flare up only after they have left the cluster; these are the same objects that are the progenitors of gamma-ray bursts (GRBs). Each of the giant stellar arcs which are grouped into multiple systems of stellar complexes in the LMC and NGC 6946 could only be produced by a single powerful energy release near its center. The progenitors of these systems of arc-shaped stellar complexes must have had a common source nearby, and it could only be a massive star cluster. Such clusters are actually known near both systems. On the other hand, calculations of the dynamical evolution of star clusters show that close binary systems of compact objects are formed in the dense central parts of the clusters and are then ejected from them during triple encounters. Mergers of the components of such systems are believed to be responsible for GRBs. Since their progenitors are ejected from the cluster before merging, the arc-shaped stellar complexes produced by GRBs are observed near (but not around) the parent clusters. If a considerable fraction of the GRB progenitors are formed as a result star encounters in massive star clusters, and if the GRBs themselves trigger star formation near the parent clusters, then observations of GRBs in star-forming regions are consistent with their origin during mergers of pairs of compact objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.