Abstract
To investigate the processes by which sediment is transported through a submarine canyon incised in a continental margin affected by recurrent dense shelf water cascading events, several instrumented moorings were deployed in the Cap de Creus Canyon from September 2004 to September 2005. This was done as part of the EuroSTRATAFORM Program that investigated sediment transport and accumulation processes in the Gulf of Lions. Results obtained in this observational study confirm that major cascading events can effectively contribute to the rapid export of sediment from the shelf and upper slope to deeper environments, and suggest that the associated strong currents carrying coarse particles are able to erode the canyon floor and generate sedimentary furrows. During winter 2004–2005, persistent northerly winds and the absence of river floods contributed to decrease the buoyancy of coastal waters and to dramatically enhance the intensity of dense shelf water cascades in the Gulf of Lions. Under such conditions, cascading continuously affected the entire Cap de Creus upper canyon section for more than a month and sustained cold temperatures and down-canyon steady currents >60 cm/s (up to 100 cm/s), showing periodic fluctuations that lasted between 3 and 6 days. Increases in suspended sediment concentrations were associated with dense shelf water cascading outbursts, but the magnitude of the concentration peaks decreased with time, suggesting a progressive exhaustion of the resuspendable sediments from the shelf and canyon floor. Grain size analyses of the particles caught by a near-bottom sediment trap show that dense shelf water cascades are able to transport coarse sediments (up to 65% sand) in suspension (and presumably as bed load), which have the potential to abrade the seafloor and generate erosive bed forms. The orientation of a large field of “wide” (i.e., widths about 1/2 spacing indicative of erosive formation) sedimentary furrows recently observed in the Cap de Creus Canyon clearly coincides with the preferential direction of highest velocities measured by the moored current meters, indicating a causative relationship between contemporary dense shelf water cascades and furrow formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.