Abstract

Generic image recognition techniques are widely studied for automatic image indexing. However, many of these methods are computationally too heavy for a practically large setup. Thus, for realizing scalability, it is important to properly balance the trade-off between performance and computational cost. In recent years, methods based on a bag-of-keypoints approach have been successful and widely used. However, the preprocessing cost for building visual words becomes immense in large-scale datasets. On the other hand, methods based on global image features have been used for a long time. Because global image features can be extracted rapidly, it is relatively easy to use them with large datasets. However, the performance of global feature methods is usually poor compared to the bag-of-keypoints methods. This paper proposes a simple but powerful scheme of boosting the performance of global image features by densely sampling low-level statistical moments of local features. Also, we use a scalable learning and classification method which is substantially lighter than a SVM. Our method achieved performance comparable to state-of-the-art methods despite its remarkable simplicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.