Abstract

We propose a real-time approach to learn semantic maps from moving RGB-D cameras. Our method models geometry, appearance, and semantic labeling of surfaces. We recover camera pose using simultaneous localization and mapping while concurrently recognizing and segmenting object classes in the images. Our object-class segmentation approach is based on random decision forests and yields a dense probabilistic labeling of each image. We implemented it on GPU to achieve a high frame rate. The probabilistic segmentation is fused in octree-based 3D maps within a Bayesian framework. In this way, image segmentations from various view points are integrated within a 3D map which improves segmentation quality. We evaluate our system on a large benchmark dataset and demonstrate state-of-the-art recognition performance of our object-class segmentation and semantic mapping approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.