Abstract
We consider the possibility of encoding m classical bits into many fewer n quantum bits (qubits) so that an arbitrary bit from the original m bits can be recovered with good probability. We show that nontrivial quantum codes exist that have no classical counterparts. On the other hand, we show that quantum encoding cannot save more than a logarithmic additive factor over the best classical encoding. The proof is based on an entropy coalescence principle that is obtained by viewing Holevo's theorem from a new perspective.In the existing implementations of quantum computing, qubits are a very expensive resource. Moreover, it is difficult to reinitialize existing bits during the computation. In particular, reinitialization is impossible in NMR quantum computing, which is perhaps the most advanced implementation of quantum computing at the moment. This motivates the study of quantum computation with restricted memory and no reinitialization, that is, of quantum finite automata. It was known that there are languages that are recognized by quantum finite automata with sizes exponentially smaller than those of corresponding classical automata. Here, we apply our technique to show the surprising result that there are languages for which quantum finite automata take exponentially more states than those of corresponding classical automata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.