Abstract

In this work, we develop a novel dense planar-inertial SLAM (DPI-SLAM) system to reconstruct dense 3D models of large indoor environments using a hand-held RGB-D sensor and an inertial measurement unit (IMU). The preinte-grated IMU measurements are loosely-coupled with the dense visual odometry (VO) estimation and tightly-coupled with the planar measurements in a full SLAM framework. The poses, velocities, and IMU biases are optimized together with the planar landmarks in a global factor graph using incremental smoothing and mapping with the Bayes Tree (iSAM2). With odometry estimation using both RGB-D and IMU data, our system can keep track of the poses of the sensors even without sufficient planes or visual information (e.g. textureless walls) temporarily. Modeling planes and IMU states in the fully probabilistic global optimization reduces the drift that distorts the reconstruction results of other SLAM algorithms. Moreover, structural constraints between nearby planes (e.g. right angles) are added into the DPI-SLAM system, which further recovers the drift and distortion. We test our DPI-SLAM on large indoor datasets and demonstrate its state-of-the-art performance as the first planar-inertial SLAM system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.