Abstract

Dense packings of nonoverlapping bodies in three-dimensional Euclidean space R(3) are useful models of the structure of a variety of many-particle systems that arise in the physical and biological sciences. Here we investigate the packing behavior of congruent ring tori in R(3), which are multiply connected nonconvex bodies of genus 1, as well as horn and spindle tori. Specifically, we analytically construct a family of dense periodic packings of unlinked tori guided by the organizing principles originally devised for simply connected solid bodies [Torquato and Jiao, Phys. Rev. E 86, 011102 (2012)]. We find that the horn tori as well as certain spindle and ring tori can achieve a packing density not only higher than that of spheres (i.e., π/sqrt[18] = 0.7404...) but also higher than the densest known ellipsoid packings (i.e., 0.7707...). In addition, we study dense packings of clusters of pair-linked ring tori (i.e., Hopf links), which can possess much higher densities than corresponding packings consisting of unlinked tori.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.