Abstract

The effect of particle-gas and particle-particle interactions in a cold spray process is studied when the particle loading is high. To examine the effect of the presence of a dense particulate flow on the supersonic gas, an Eulerian-Eulerian approach is used. It is found that when the volume fraction of the injected particles is increased, the turbulence of the gas phase will be augmented by the motion of particles and consequently, the shape, the strength, and the location of the compression and expansion waves will be altered. Shock-particle interactions are demonstrated for various volume fractions. Another important parameter, which will affect the spraying deposition efficiency, is the substrate stand-off distance. It is found that the stagnation pressure alternates for different stand-off distances because of the formation of compression and expansion waves outside the nozzle exit. The particle normal velocity on impact is a strong function of the stagnation pressure on the substrate as particles must pierce through the bow shock formed on that region. The effect of the particle size and number density are also studied for different loading conditions. It is found that small and large particles behave differently as they pass through shock diamonds and the bow shock, i.e., in the case of very small particles, as the loading increases, the impact velocity increases, while, for the large particles, the trend is reversed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.