Abstract
The quantum dense output problem is the process of evaluating time-accumulated observables from time-dependent quantum dynamics using quantum computers. This problem arises frequently in applications such as quantum control and spectroscopic computation. We present a range of algorithms designed to operate on both early and fully fault-tolerant quantum platforms. These methodologies draw upon techniques like amplitude estimation, Hamiltonian simulation, quantum linear Ordinary Differential Equation (ODE) solvers, and quantum Carleman linearization. We provide a comprehensive complexity analysis with respect to the evolution time T and error tolerance ϵ. Our results demonstrate that the linearization approach can nearly achieve optimal complexity O(T/ϵ) for a certain type of low-rank dense outputs. Moreover, we provide a linearization of the dense output problem that yields an exact and finite-dimensional closure which encompasses the original states. This formulation is related to the Koopman Invariant Subspace theory and may be of independent interest in nonlinear control and scientific machine learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.