Abstract

We report the observation of a dense triangular network of one-dimensional (1D) metallic modes in a continuous and uniform monolayer of MoSe(2) grown by molecular-beam epitaxy. High-resolution transmission electron microscopy and scanning tunneling microscopy and spectroscopy studies show that these 1D modes are midgap states at inversion domain boundaries. Scanning tunneling microscopy and spectroscopy measurements further reveal intensity undulations of the metallic modes, presumably arising from the superlattice potentials due to the moiré pattern and the quantum confinement effect. A dense network of the metallic modes with a high density of states is of great potential for heterocatalysis applications. The interconnection of such midgap 1D conducting channels may also imply new transport behaviors distinct from the 2D bulk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.