Abstract

AbstractDense metal membranes are a well-developed technology for the production of high-purity hydrogen. The physical mechanism of hydrogen transport across metal films—dissociation of molecular hydrogen, diffusion of interstitial atomic hydrogen, and subsequent recombinative desorption of molecular hydrogen—means that metal membranes can have extremely high selectivities for hydrogen transport relative to other gases. We describe current experimental and theoretical trends in the development of metal alloy membranes for hydrogen purification in practical, chemically robust processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call