Abstract

A light field records numerous light rays from a real-world scene. However, capturing a dense light field by existing devices is a time-consuming process. Besides, reconstructing a large amount of light rays equivalent to multiple light fields using sparse sampling arises a severe challenge for existing methods. In this paper, we present a learning-based method to reconstruct multiple novel light fields between two mutually independent light fields. We indicate that light rays distributed in different light fields have the same consistent constraints under a certain condition. The most significant constraint is a depth related correlation between angular and spatial dimensions. Our method avoids working out the error-sensitive constraint by employing a deep neural network. We predict residual values of pixels on epipolar plane image (EPI) to reconstruct novel light fields. Our method is able to reconstruct 2 to 4 novel light fields between two mutually independent input light fields. We also compare our results with those yielded by a number of alternatives elsewhere in the literature, which shows our reconstructed light fields have better structure similarity and occlusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call